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24. PARTICLE DETECTORS

Revised 1999 (see the various sections for authors).

In this section we give various parameters for common detector
components. The quoted numbers are usually based on typical devices,
and should be regarded only as rough approximations for new designs.
A more detailed discussion of detectors can be found in Ref. 1.
In Table 24.1 are given typical spatial and temporal resolutions of
common detectors.

Table 24.1: Typical detector characteristics.

Resolution Dead
Detector Type Accuracy (rms) Time Time

Bubble chamber 10 to 150 µm 1 ms 50 msa

Streamer chamber 300 µm 2 µs 100 ms
Proportional chamber ≥ 300 µmb,c 50 ns 200 ns
Drift chamber 50 to 300 µm 2 nsd 100 ns
Scintillator — 150 ps 10 ns
Emulsion 1 µm — —

Silicon strip
pitch
3 to 7

e
f f

Silicon pixel 2 µmg f f

a Multiple pulsing time.
b 300 µm is for 1 mm pitch.
c Delay line cathode readout can give ±150 µm parallel to anode

wire.
d For two chambers.
e The highest resolution (“7”) is obtained for small-pitch detectors

(. 25 µm) with pulse-height-weighted center finding.
f Limited at present by properties of the readout electronics. (Time

resolution of ≤ 25 ns is planned for the ATLAS SCT.)
g Analog readout of 34 µm pitch, monolithic pixel detectors.

24.1. Organic scintillators

Written October 1995 by K.F. Johnson (FSU).

Organic scintillators are broadly classed into three types, crystalline,
liquid, and plastic, all of which utilize the ionization produced by
charged particles (see the section on “Passage of particles through
matter” (Sec. 23.2) of this Review) to generate optical photons, usually
in the blue to green wavelength regions [2]. Plastic scintillators are
by far the most widely used and we address them primarily; however,
most of the discussion will also have validity for liquid scintillators
with obvious caveats. Crystal organic scintillators are practically
unused in high-energy physics.

Densities range from 1.03 to 1.20 g cm−3. Typical photon yields
are about 1 photon per 100 eV of energy deposit [3]. A one-cm-thick
scintillator traversed by a minimum-ionizing particle will therefore
yield ≈ 2 × 104 photons. The resulting photoelectron signal will
depend on the collection and transport efficiency of the optical
package and the quantum efficiency of the photodetector.

Plastic scintillators do not respond linearly to the ionization
density. Very dense ionization columns emit less light than expected
on the basis of dE/dx for minimum-ionizing particles. A widely
used semi-empirical model by Birks’ posits that recombination and
quenching effects between the excited molecules reduce the light
yield [4]. These effects are more pronounced the greater the density of
the excited molecules. Birks’ formula is

dL

dx
= L0

dE/dx

1 + kB dE/dx
, (24.1)

where L is the luminescence, L0 is the luminescence at low
specific ionization density, and kB is Birks’ constant, which must be
determined for each scintillator by measurement.

Decay times are in the ns range; rise times are much faster. The
combination of high light yield and fast response time allows the
possibility of sub-ns timing resolution [5]. The fraction of light emitted
during the decay “tail” can depend on the exciting particle. This
allows pulse shape discrimination as a technique to carry out particle
identification. Because of the hydrogen content (carbon to hydrogen
ratio ≈ 1) plastic scintillator is sensitive to proton recoils from
neutrons. Ease of fabrication into desired shapes and low cost has
made plastic scintillators a common detector component. Recently,
plastic scintillators in the form of scintillating fibers have found
widespread use in tracking and calorimetry [6].

24.1.1. Scintillation mechanism :
Scintillation: A charged particle traversing matter leaves behind it a
wake of excited molecules. Certain types of molecules, however, will
release a small fraction ( ≈ 3%) of this energy as optical photons. This
process, scintillation, is especially marked in those organic substances
which contain aromatic rings, such as polystyrene, polyvinyltoluene,
and napthalene. Liquids which scintillate include toluene and xylene.

Fluorescence: In fluorescence, the initial excitation takes place via
the absorption of a photon, and de-excitation by emission of a
longer wavelength photon. Fluors are used as “waveshifters” to shift
scintillation light to a more convenient wavelength. Occurring in
complex molecules, the absorption and emission are spread out over a
wide band of photon energies, and have some overlap, that is, there
is some fraction of the emitted light which can be re-absorbed [7].
This “self-absorption” is undesirable for detector applications because
it causes a shortened attenuation length. The wavelength difference
between the major absorption and emission peaks is called the Stokes’
shift. It is usually the case that the greater the Stokes’ shift, the
smaller the self absorption—thus, a large Stokes’ shift is a desirable
property for a fluor.
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Figure 24.1: Cartoon of scintillation “ladder” depicting the
operating mechanism of plastic scintillator. Approximate fluor
concentrations and energy transfer distances for the separate
sub-processes are shown.

Scintillators: The plastic scintillators used in high-energy physics are
binary or ternary solutions of selected fluors in a plastic base containing
aromatic rings. (See the appendix in Ref. 8 for a comprehensive list
of plastic scintillator components.) Virtually all plastic scintillators
contain as a base either polyvinyltoluene, polystyrene, or acrylic,
whereby polyvinyltoluene-based scintillator can be up to 50% brighter
than the others. Acrylic is non-aromatic and has therefore a very
low scintillation efficiency. It becomes an acceptable scintillator when
napthalene, a highly aromatic compound, is dissolved into the acrylic
at 5% to 20% weight fraction. Thus, in “acrylic” scintillator the
active component is napthalene. The fluors must satisfy additional
conditions besides being fluorescent. They must be sufficiently stable,
soluble, chemically inert, fast, radiation tolerant, and efficient.

The plastic base is the ionization-sensitive (i.e., the scintillator)
portion of the plastic scintillator (see Fig. 24.1). In the absence of
fluors the base would emit UV photons with short attenuation length
(several mm). Longer attenuation lengths are obtained by dissolving
a “primary” fluor in high concentration (1% by weight) into the
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base, which is selected to efficiently reradiate absorbed energy at
wavelengths where the base is more transparent.

The primary fluor has a second important function. The decay time
of the scintillator base material can be quite long—in pure polystyrene
it is 16 ns, for example. The addition of the primary fluor in high
concentration can shorten the decay time by an order of magnitude
and increase the total light yield. At the concentrations used (1% and
greater), the average distance between a fluor molecule and an excited
base unit is around 100 Å, much less than a wavelength of light. At
these distances the predominant mode of energy transfer from base to
fluor is not the radiation of a photon, but a resonant dipole-dipole
interaction, first described by Foerster, which strongly couples the
base and fluor [9]. The strong coupling sharply increases the speed
and the light yield of the plastic scintillators.

Unfortunately, a fluor which fulfills other requirements is usually
not completely adequate with respect to emission wavelength or
attenuation length, so it is necessary to add yet another waveshifter
(the “secondary” fluor), at fractional percent levels, and occasionally
a third (not shown in Fig. 24.1).

External wavelength shifters: Light emitted from a plastic scintillator
may be absorbed in a (nonscintillating) base doped with a wave-
shifting fluor. Such wavelength shifters are widely used to aid
light collection in complex geometries. The wavelength shifter must
be insensitive to ionizing radiation and Čerenkov light. A typical
wavelength shifter uses an acrylic base (without napthalene!) because
of its good optical qualities, a single fluor to shift the light emerging
from the plastic scintillator to the blue-green, and contains ultra-violet
absorbing additives to deaden response to Čerenkov light.

24.1.2. Caveats and cautions: Plastic scintillators are reliable,
robust, and convenient. However, they possess quirks to which the
experimenter must be alert.

Aging and Handling: Plastic scintillators are subject to aging which
diminishes the light yield. Exposure to solvent vapors, high
temperatures, mechanical flexing, irradiation, or rough handling
will aggravate the process. A particularly fragile region is the surface
which can “craze”—develop microcracks—which rapidly destroy the
capability of plastic scintillators to transmit light by total internal
reflection. Crazing is particularly likely where oils, solvents, or
fingerprints have contacted the surface.

Attenuation length: The Stokes’ shift is not the only factor
determining attenuation length. Others are the concentration of
fluors (the higher the concentration of a fluor, the greater will be
its self-absorption); the optical clarity and uniformity of the bulk
material; the quality of the surface; and absorption by additives, such
as stabilizers, which may be present.

Afterglow: Plastic scintillators have a long-lived luminescence which
does not follow a simple exponential decay. Intensities at the 10−4

level of the initial fluorescence can persist for hundreds of ns [10].

Atmospheric quenching: Plastic scintillators will decrease their light
yield with increasing partial pressure of oxygen. This can be a 10%
effect in an artificial atmosphere [11]. It is not excluded that other
gases may have similar quenching effects.

Magnetic field: The light yield of plastic scintillators may be changed
by a magnetic field. The effect is very nonlinear and apparently not
all types of plastic scintillators are so affected. Increases of ≈ 3% at
0.45 T have been reported [12]. Data are sketchy and mechanisms are
not understood.

Radiation damage: Irradiation of plastic scintillators creates color
centers which absorb light more strongly in the UV and blue than
at longer wavelengths. This poorly understood effect appears as
a reduction both of light yield and attenuation length. Radiation
damage depends not only on the integrated dose, but on the dose rate,
atmosphere, and temperature, before, during and after irradiation, as
well as the materials properties of the base such as glass transition
temperature, polymer chain length, etc. Annealing also occurs,
accelerated by the diffusion of atmospheric oxygen and elevated

Table 24.2: Properties of several inorganic crystal scintillators.

NaI(Tl) BGO BaF2 CsI(Tl) CsI(pure) PbWO4 CeF3

Density (g cm−3):
3.67 7.13 4.89 4.53 4.53 8.28 6.16

Radiation length (cm):
2.59 1.12 2.05 1.85 1.85 0.89 1.68

Molière radius (cm):
4.5 2.4 3.4 3.8 3.8 2.2 2.6

dE/dx (MeV/cm) (per mip):
4.8 9.2 6.6 5.6 5.6 13.0 7.9

Nucl. int. length (cm):
41.4 22.0 29.9 36.5 36.5 22.4 25.9

Decay time (ns):
250 300 0.7f 1000 10, 36f 5–15 10–30

620s ∼ 1000s

Peak emission λ (nm):
410 480 220f 565 305f 420–440† 310–340

310s ∼ 480s

Refractive index:
1.85 2.20 1.56 1.80 1.80 2.3 1.68

Relative light output:∗
1.00 0.15 0.05f 0.40 0.10f 0.01 0.10

0.20s 0.02s

Hygroscopic:
very no slightly somewhat somewhat no no

∗ For standard photomultiplier tube with a bialkali photocathode.
See Ref. 21 for photo-diode results.
†Emission ∼ 500 nm also possible due to crystal defects.
f = fast component, s = slow component

temperatures. The phenomena are complex, unpredictable, and not
well understood [13]. Since color centers are less intrusive at longer
wavelengths, the most reliable method of mitigating radiation damage
is to shift emissions at every step to the longest practical wavelengths,
e.g., utilize fluors with large Stokes’ shifts.

24.2. Inorganic scintillators

Revised September 1999 by C. L. Woody (BNL).

Table 24.2 gives a partial list of commonly-used inorganic
scintillators in high-energy and nuclear physics [14–21]. These
scintillating crystals are generally used where high density and good
energy resolution are required. In a crystal which contains nearly
all of the energy deposited by an incident particle, the energy
resolution is determined largely, but not totally, by the light output.
The table gives the light output of the various materials relative
to NaI, which has an intrinsic light output of about 40000 photons
per MeV of energy deposit. The detected signal is usually quoted in
terms of photoelectrons per MeV produced by a given photodetector.
The relationship between photons/MeV produced and p.e.’s/MeV
detected involves factors for light collection efficiency (typically
10–50%, depending on geometry) and the quantum efficiency of
the detector (∼ 15–20% for photomultiplier tubes and ∼ 70% for
silicon photodiodes for visible wavelengths ). The quantum efficiency
of the detector is usually highly wavelength dependent and should
be matched to the particular crystal of interest to give the highest
quantum yield at the wavelength corresponding to the peak of the
scintillation emission. The comparison of the light output given in
Table 24.2 is for a standard photomultiplier tube with a bialkali
photocathode. Results with photodiodes can be significantly different;
e.g., the CsI(Tl) response relative to NaI(Tl) is 1.4 rather than
0.40 [21]. For scintillators which emit in the UV, a detector with a
quartz window should be used.
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24.3. Čerenkov detectors

Written October 1993 by D.G. Coyne (UCSC).

Čerenkov detectors utilize one or more of the properties of Čerenkov
radiation discussed in the Passages of Particles through Matter section
(Sec. 23 of this Review): the existence of a threshold for radiation;

the dependence of the Čerenkov cone half-angle θc on the velocity
of the particle; the dependence of the number of emitted photons on
the particle’s velocity. The presence of the refractive index n in the
relations allows tuning these quantities for a particular experimental
application (e.g., using pressurized gas and/or various liquids as
radiators).

The number of photoelectrons (p.e.’s) detected in a given device or
channel is

Np.e. = L
α2z2

remec2

∫
εcoll(E) εdet(E) sin2 θc(E)dE , (24.2)

where L is the path length in the radiator, εcoll is the
efficiency for collecting the Čerenkov light, εdet is the quantum
efficiency of the transducer (photomultiplier or equivalent), and
α2/(remec

2) = 370 cm−1eV−1. The quantities εcoll, εdet, and θc are
all functions of the photon energy E, although in typical detectors θc
(or, equivalently, the index of refraction) is nearly constant over the
useful range of photocathode sensitivity. In this case,

Np.e. ≈ LN0〈sin2 θc〉 (24.3)

with

N0 =
α2z2

remec2

∫
εcoll εdetdE . (24.4)

We take z = 1, the usual case in high-energy physics, in the following
discussion.

Threshold Čerenkov detectors make a simple yes/no decision based on
whether the particle is above/below the Čerenkov threshold velocity
βt = 1/n. Careful designs give 〈εcoll〉& 90%. For a photomultiplier
with a typical bialkali cathode,

∫
εdetdE ≈ 0.27, so that

Np.e./L ≈ 90 cm−1 〈sin2 θc〉 (i.e., N0 = 90 cm−1) . (24.5)

Suppose, for example, that n is chosen so that the threshold for species
a is pt; that is, at this momentum species a has velocity βa = 1/n. A
second, lighter, species b with the same momentum has velocity βb, so
cos θc = βa/βb, and

Np.e.

L
≈ 90 cm−1 m2

a −m2
b

p2
t + m2

a
. (24.6)

For K/π separation at p = 1 GeV/c, Np.e./L ≈ 16 cm−1 for π’s and
(by design) 0 for K’s.

For limited path lengths Np.e. can be small, and some minimum
number is required to trigger external electronics. The overall
efficiency of the device is controlled by Poisson fluctuations, which can
be especially critical for separation of species where one particle type
is dominant [22].

A related class of detectors uses the number of observed
photoelectrons (or the calibrated pulse height) to discriminate between
species or to set probabilities for each particle species [23].

Differential Čerenkov detectors exploit the dependence of θc on β,
using optical focusing and/or geometrical masking to select particles
having velocities in a specified region. With careful design, a velocity
resolution of σβ/β ≈ 10−4–10−5 can be obtained [22,24].

Ring-Imaging Čerenkov detectors use all three properties of Čerenkov
radiation in both small-aperture and 4π geometries. They are
principally used as hypothesis-testing rather than yes/no devices; that
is, the probability of various identification possibilities is established
from θc and Np.e. for a particle of known momentum. In most cases
the optics map the Čerenkov cone onto a circle at the photodetector,
often with distortions which must be understood.

Table 24.3: Momentum range for 3σ separation in the SLD
ring-imaging Čerenkov detector.

Particle pair Mom. range for 3 σ separation

e/π p. 5 GeV/c
π/K 0.23.p. 20 GeV/c
K/p 0.82.p. 30 GeV/c

The 4π devices [25,26] typically have both liquid (C6F14, n = 1.276)
and gas (C5F12, n = 1.0017) radiators, the light from the latter being
focused by mirrors. They achieve 3 σ separation of e/π/K/p over wide
ranges, as shown in Table 24.3. Great attention to detail, especially
with the minimization of UV-absorbing impurities, is required to get
〈εcoll〉& 50%.

The phototransducer is typically a TPC/wire-chamber combination
sensitive to single photoelectrons and having charge division or
pads. This construction permits three-dimensional reconstruction
of photoelectron origins, which is important for transforming the
Čerenkov cone into a ring. Single photoelectrons are generated by
doping the TPC gas (for instance, ethane/methane in some proportion)
with ∼ 0.05% TMAE [tetrakis(dimethylamino)ethylene] [27], leading
to photon absorption lengths along the Čerenkov cone of ∼ 30 mm.
The readout wires must be equipped with special structures (blinds
or wire gates) to prevent photon feedback from avalanches generating
cross-talk photoelectrons in the TPC. Drift-gas purity must be
maintained to assure mean drift lengths of the order of meters without
recombination (i.e., lifetimes of & 100 µs at typical drift velocities
of & 4 cm/µs). The net 〈εdet〉’s reach 30%, with the limitation being
the TMAE quantum efficiency.

Photon energy cutoffs are set by the TMAE (E > 5.4 eV), the
UV transparency of fused silica glass (E < 7.4 eV), and the C6F14

(E < 7.1 eV). With effort one gets 50 ≤ N0 ≤ 100 for complete rings
using liquid or gas. This includes losses due to electrostatic shielding
wires and window/mirror reflections, but not gross losses caused by
total internal reflection or inadequate coverage by the TPC’s.

Such numbers allow determination of ring radii to ∼0.5% (liquid)
and ∼2% (gas), leading to the particle species separations quoted
above. Since the separation efficiencies may have “holes” as a function
of p, detailed calculations are necessary.

24.4. Transition radiation detectors (TRD’s)

Revised February 1998 by D. Froidevaux (CERN).

It is clear from the discussion in the Passages of Particles Through
Matter section (Sec. 23 of this Review) that transition radiation (TR)
only becomes useful for particle detectors when the signal can be
observed as x rays emitted along the particle direction for Lorentz
factors γ larger than 1000. In practice, TRD’s are therefore used to
provide electron/pion separation for 0.5 GeV/c <∼ p <∼ 100 GeV/c.
The charged-particle momenta have usually been measured elsewhere
in the detector in the past [28].

Since soft x rays, in the useful energy range between 2 and 20 keV,
are radiated with about 1% probability per boundary crossing,
practical detectors use radiators with several hundred interfaces,
e.g. foils or fibers of low-Z materials such as polypropylene (or, more
rarely, lithium) in a gas. Absorption inside the radiator itself and in
the inactive material of the x-ray detector is important and limits
the usefulness of the softer x rays, but interference effects are even
larger, and saturate the x-ray yield for electron energies above a
few GeV [29,30].

A classical detector is composed of several similar modules, each
consisting of a radiator and an x-ray detector, which is usually a
wire chamber operated with a xenon-rich mixture, in order efficiently
to absorb the x rays. Since transition-radiation photons are mostly
emitted at very small angles with respect to the charged-particle
direction, the x-ray detector most often detects the sum of the
ionization loss (dE/dx) of the charged particle in the gas and energy
deposition of the x rays. The discrimination between electrons and
pions can be based on the charges measured in each detection module,
on the number of energy clusters observed above an optimal threshold
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(usually in the 5 to 7 keV region), or on more sophisticated methods
analyzing the pulse shape as a function of time. Once properly
calibrated and optimized, most of these methods yield very similar
results.

More recent development work has aimed at increasing the intrinsic
quality of the TRD-performance by increasing the probability per
detection module of observing a signal from TR-photons produced
by electrons. This has been achieved experimentally by distributing
small-diameter straw-tube detectors uniformly throughout the
radiator material [31]. This method has thereby also cured one
of the major drawbacks of more classical TRD’s, that is, their
need to rely on another detector to measure the charged-particle
trajectory. For example, in the straw tracker proposed for one of
the LHC experiments [32], charged particles cross about 40 straw
tubes embedded in the radiator material. Dedicated R&D work and
detailed simulations have shown that the combination of charged-track
measurement and particle identification in the same detector will
provide a very powerful tool even at the highest LHC luminosity.
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Figure 24.2: Pion efficiency measured (or predicted) for
different TRDs as a function of the detector length for a fixed
electron efficiency of 90%. The experimental data are directly
taken or extrapolated from references [33–45] (top to bottom).

The major factor in the performance of any TRD is its overall
length. This is illustrated in Fig. 24.2, which shows, for a variety
of detectors, the measured (or predicted) pion efficiency at a fixed
electron efficiency of 90% as a function of the overall detector length.
The experimental data cover too wide a range of particle energies
(from a few GeV to 40 GeV) to allow for a quantitative fit to
a universal curve. Fig. 24.2 shows that an order of magnitude in
rejection power against pions is gained each time the detector length
is increased by ∼ 20 cm.

24.5. Wire chambers

Written October 1999 by A. Cattai and L. Rolandi (CERN).

A wire chamber relies on the detection of a large fraction of the
charge created in a volume filled with an appropriate gas mixture.
A charged particle traversing a gas layer of thickness ∆ produces
electron-ion pairs along its path (see Sec. 23.2). The yield (1/λ) of
ionization encounters for a minimum ionization particle (m.i.p.) (see
Fig. 23.1) is given in Table 24.4

The probability to have at least one ionization encounter is
1 − exp(−∆/λ) and the thickness of the gas layer for 99% efficiency
is t99 = 4.6λ. Depending on the gas, some 65–80% of the encounters
result in the production of only one electron; the probability that a
cluster has more than five electrons is smaller than 10%. However
the tail of the distribution is very long and the yield of ionization
electrons is 3–4 times that of the ionization encounters. The secondary
ionization happens either in collisions of (primary) ionization electrons
with atoms or through intermediate excited states. The process is
non-linear and gas mixtures may have larger yields than each of their
components. See also the discussion in Sec. 23.7.

Table 24.4: For various gases at STP: (a) yield of ionization
encounters (1/λ) for m.i.p. [46], (b) t99: thickness of the gas layer
for 99% efficiency, and (c) the average number of free electrons
produced by a m.i.p. (calculated using data from Ref. 47).

Encounters/cm t99(mm) Free electrons/cm

He 5 9.2 16
Ne 12 3.8 42
Ar 25 1.8 103
Xe 46 1.0 340
CH4 27 1.7 62
CO2 35 1.3 107
C2H6 43 1.1 113

Under the influence of electric and magnetic fields the ionization
electrons drift inside the gas with velocity u given by:

u = µ|E| 1
1 + ω2τ2

(
Ê + ωτ(Ê× B̂) + ω2τ2(Ê · B̂)B̂

)
(24.7)

where Ê and B̂ are unit vectors in the directions of the electric and
magnetic fields respectively, µ is the electron mobility in the gas, ω
is the cyclotron frequency eB/mc, and τ = µm/e is the mean time
between collisions of the drifting electrons. The magnitude of the drift
velocity depends on many parameters; typical values are in the range
1–8 cm/µs.

In a quite common geometry, the drift electric field is perpendicular
to the magnetic field. In this case the electrons drift at an angle ψ
with respect to the electric field direction such that tanψ = ωτ .

The ionization electrons are eventually collected by a thin (typically
10 µm radius) anode wire where a strong electric field—increasing as
1/r—accelerates the electrons enough to produce secondary ionization
and hence an avalanche. A quenching gas (organic molecules with large
photo-absorption cross-section) absorbs the majority of the photons
produced during the avalanche development, keeping the avalanche
region localized. The gain achievable with a wire counter depends
exponentially on the charge density on the wire, on the gas density
ρ and—through it—on pressure and temperature: dG/G ≈ −Kdρ/ρ,
where the coefficient K ranges between 5 and 8 in practical cases.
Gains larger than 104 can be obtained in proportional mode.

The electrons produced in the avalanche are collected by the wire
in a few nanoseconds. The positive ions move away from the wire and
generate a signal that can be detected with an amplifier. Depending
on whether the wire is treated as a current source or a voltage source,
the signal is described respectively by:

I(t) = q
d

dt
F (t) ; ∆V (t) =

q

C
F (t) , (24.8)

where q is the positive charge in the avalanche, C is the
capacitance between the anode wire and the cathodes and
F (t) = ln(1 + t/t0)/ ln(1 + tmax/t0). The constant t0 is of the order
of one or few nanoseconds; the constant tmax (several microseconds)
describes the time that it takes ions to reach the cathodes.

A sketch of the first multi-wire proportional chamber (MWPC) [48]
is shown in Fig. 24.3. It consists of a plane of parallel sense wires
with spacing s and length L inserted in a gap of thickness ∆. The
potential distributions and fields in a proportional or drift chamber
can usually be calculated with good accuracy from the exact formula
for the potential around an array of parallel line charges q (coul/m)
along z and located at y = 0, x = 0, ±s, ±2s, . . . ,

V (x, y) = − q

4π ε0
ln
{
4
[
sin2

(πx

s

)
+ sinh2

(πy

s

)]}
. (24.9)

With digital readout, the resolution in the direction perpendicular
to the wire is s/

√
12, where s is typically 1–2 mm. Similar resolution

can be achieved with a smaller channel density by measuring the
difference in time between the arrival of electrons at the wire and the
traversal of the particle, albeit with a longer response time. In the
case of drift chambers, the spatial resolution is limited by the diffusion



178 24. Particle detectors

–0.6 –0.4 –0.2 0.2 0.4 0.60
–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

x (cm)

y 
(c

m
)

Figure 24.3: Electric field lines in a (MWPC) with an anode
pitch of 2 mm as calculated with GARFIELD program [49].

of ionization electrons during the drift and by the fluctuations of the
ionization process. Depending on the gas mixture, the width of the
diffusing cloud after 1 cm of drift is typically between 50 and 300 µm;
small diffusion implies low drift velocity. With drift lengths up to 5 cm
(1 µs), resolutions in the range 100–200 µm have been achieved in
chambers with surface areas of several square meters [50]. The central
detectors in many collider experiments are drift chambers with the
wires parallel to the beam direction. Small volume chambers (0.1 m3)
have been used for vertex measurement achieving resolutions of 50 µm
using high pressure (2–4 bar) and low diffusion gas mixtures [51].
Large volume chambers (5–40 m3) with several thousand wires of
length of 1–2 meters are operated with resolution between 100 and
200 µm [52].

The spatial resolution cannot be improved by arbitrarily reducing
the spacing of the wires. In addition to the practical difficulties of
precisely stringing wires at a pitch below 1 mm, there is a fundamental
limitation: the electrostatic force between the wires is balanced by the
mechanical tension, which cannot exceed a critical value. This gives
the following approximate stability condition:

s

L
≥ 1.5× 10−3V (kV)

√
20 g
T

, (24.10)

where V is the voltage of the sense wire and T is the tension of the
wire in grams-weight equivalent.
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Figure 24.4: Electron drift lines in a micro-strip gas chamber
with a pitch of 200 µm.

This limitation can be overcome by means of lithographic
techniques [53]: a series of thin aluminum strips are precisely 0.2 µm
engraved on an insulating support producing a miniaturized version
of a MWPC (see Fig. 24.4). With this technique the spacing of the
anodes can be reduced to 0.1–0.2 mm, reducing the drift time of the
ions and improving on the spatial resolution and on the rate capability
of the chamber.

In all these devices, since the avalanche is very localized along the
anode, signals induced on nearby electrodes can be used to measure
the coordinate along the anode direction (see Sec. 24.6).

A review of the principle of particle detection with drift chambers
can be found in [54]. A compilation of the mobilities, diffusion
coefficients and drift deflection angles as a function of E and B for
several gas mixtures used in proportional chambers can be found
in [55]. A review of micro-strip gas chambers (MSGC) can be found
in [56].

24.6. Time-projection chambers

Written November 1997 by M.T. Ronan (LBNL).

Detectors with long drift distances perpendicular to a multi-anode
proportional plane provide three-dimensional information, with one
being the time projection. A (typically strong) magnetic field parallel
to the drift direction suppresses transverse diffusion (σ =

√
2Dt) by a

factor
D(B)/D(0) =

1
1 + ω2τ2

, (24.11)

where D is the diffusion coefficient, ω = eB/mc is the cyclotron
frequency, and τ is the mean time between collisions. Multiple
measurements of dE/dx along the particle trajectory combined with
the measurement of momentum in the magnetic field allows excellent
particle identification [57], as can be seen in Fig. 24.5.
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Figure 24.5: PEP4/9-TPC dE/dx measurements (185 samples
@8.5 atm Ar-CH4 80–20%) in multihadron events. The electrons
reach a Fermi plateau value of 1.4 times minimum. Muons from
pion decays are separated from pions at low momentum; π/K
are separated over all momenta except in the cross-over region.
(Low-momentum protons and deuterons originate from hadron-
nucleus collisions in inner materials such as the beam pipe.)

A typical gas-filled TPC consists of a long uniform drift region
(1–2 m) generated by a central high-voltage membrane and precision
concentric cylindrical field cages within a uniform, parallel magnetic
field [54]. Details of construction and electron trajectories near the
anode end are shown in Fig. 24.6. Signal shaping and processing using
analog storage devices or FADC’s allows excellent pattern recognition,
track reconstruction, and particle identification within the same
detector.

Typical values:

Gas: Ar + (10–20%) CH4 Pressure(P ) = 1–8.5 atm.

E/P = 100–200 V /cm/atm B = 1–1.5 Tesla

vdrift = 5–7 cm/µs ωτ = 1–8

σx or y = 100–200 µm σz = 0.2–1 mm

σdE/dx = 2.5–5.5 %
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Figure 24.6: (a) Drifting electrons are collected on the gating
grid until gated open by a triggering event. A shielding grid at
ground potential is used to terminate the drift region. Electrons
drifting through an open gating grid (b) pass through to the
amplification region around the anode wires. Positive ions
generated in the avalanche are detected on segmented cathode
pads to provide precise measurements along the wire. The slow
positive ions are blocked from entering the drift region by closing
the gating grid after the electrons have drifted through.

Truncated mean dE/dx resolution depends on the number and size
of samples, and gas pressure:

σdE/dx ∝ N−0.43 × (P`)−0.32 . (24.12)

Here N is the number of samples, ` is the sample size, and P is
the pressure. Typical dE/dx distributions are shown in Fig. 24.5.
Good three-dimensional two-track resolutions of about 1–1.5 cm are
routinely achieved.

E × B distortions arise from nonparallel E and B fields (see
Eq. (24.7)), and from the curved drift of electrons to the anode
wires in the amplification region. Position measurement errors include
contributions from the anode-cathode geometry, the track crossing
angle (α), E ×B distortions, and from the drift diffusion of electrons

σ2
x or y = σ2

0 + σ2
D(1 + tan2 α)L/Lmax + σ2

α(tanα− tanψ)2 (24.13)

where σ is the coordinate resolution, σ0 includes the anode-cathode
geometry contribution, ψ is the Lorentz angle, and L is the drift
distance.

Space-charge distortions arise in high-rate environments, especially
for low values of ωτ . However, they are mitigated by an effective
gating grid (Fig. 24.6). Field uniformities of∫

(E⊥/E) dz. 0.5–1 mm , (24.14)

over 10–40 m3 volumes have been obtained. Laser tracks and
calibration events allow mapping of any remnant drift non-uniformities.

24.7. Calorimeters

Electromagnetic calorimeters: The development of electromagnetic
showers is discussed in the “Passage of Particles Through Matter”
section (Sec. 23 of this Review). Formulae are given for the
approximate description of average showers, but since the physics
of electromagnetic showers is well understood, detailed and reliable
Monte Carlo simulation is possible. EGS4 has emerged as the
standard [58].

The resolution of sampling calorimeters (hadronic and
electromagnetic) is usually dominated by sampling fluctuations,
leading to fractional resolution σ/E scaling inversely as the square
root of the incident energy. Homogeneous calorimeters, such as solid
NaI(Tl), will in general not have resolution varying as 1/

√
E. At

high energies deviations from 1/
√

E occur because of noise, pedestal
fluctuations, nonuniformities, calibration errors, and incomplete
shower containment. Such effects are usually included by adding a
constant term to σ/E, either in quadrature or (incorrectly) directly.
In the case of the hadronic cascades discussed below, noncompensation
also contributes to the constant term.

In Table 24.5 we give resolution as measured in detectors using
typical EM calorimeter technologies. In almost all cases the installed
calorimeters yield worse resolution than test beam prototypes
for a variety of practical reasons. Where possible actual detector
performance is given. For a fixed number of radiation lengths, the
FWHM in sandwich detectors would be expected to be proportional
to
√

t for t (= plate thickness) ≥ 0.2 radiation lengths [59].
Given sufficient transverse granularity early in the calorimeter,

position resolution of the order of a millimeter can be obtained.

Table 24.5: Resolution of typical electromagnetic calorimeters.
E is in GeV.

Detector Resolution

NaI(Tl) (Crystal Ball [60]; 20 X0) 2.7%/E1/4

Lead glass (OPAL [61]) 5%/
√

E

Lead-liquid argon (NA31 [62]; 80 cells: 27 X0, 1.5 mm Pb 7.5%/
√

E

+ 0.6 mm Al + 0.8 mm G10 + 4 mm LA)

Lead-scintillator sandwich (ARGUS [63], LAPP-LAL [64]) 9%/
√

E

Lead-scintillator spaghetti (CERN test module) [65] 13%/
√

E

Proportional wire chamber (MAC; 32 cells: 13 X0, 23%/
√

E

2.5 mm typemetal + 1.6 mm Al) [66]

Hadronic calorimeters [67,68]: The length scale appropriate for
hadronic cascades is the nuclear interaction length, given very roughly
by

λI ≈ 35 g cm−2A1/3 . (24.15)

Longitudinal energy deposition profiles are characterized by a sharp
peak near the first interaction point (from the fairly local deposition
of EM energy resulting from π0’s produced in the first interaction),
followed by a more gradual development with a maximum at

x/λI ≡ tmax ≈ 0.2 ln(E/1 GeV) + 0.7 (24.16)

as measured from the front of the detector.
The depth required for containment of a fixed fraction of the

energy also increases logarithmically with incident particle energy.
The thickness of iron required for 95% (99%) containment of cascades
induced by single hadrons is shown in Fig. 24.7 [69]. Two of the sets
of data are from large neutrino experiments, while the third is from
a commonly used parameterization. Depths as measured in nuclear
interaction lengths presumably scale to other materials. From the
same data it can be concluded that the requirement that 95% of the
energy in 95% of the showers be contained requires 40 to 50 cm (2.4 to
3.0 λI) more material material than for an average 95% containment.
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Figure 24.7: Required calorimeter thickness for 95% and 99%
hadronic cascade containment in iron, on the basis of data from
two large neutrino detectors and the parameterization of Bock
et al. [69].

The transverse dimensions of hadronic showers also scale as λI ,
although most of the energy is contained in a narrow core.

The energy deposit in a hadronic cascade consists of a prompt EM
component due to π0 production and a slower component mainly due
to low-energy hadronic activity. In general, these energy depositions
are converted to electrical signals with different efficiencies [70]. The
ratio of the conversion efficiencies is usually called the intrinsic e/h
ratio. If e/h = 1.0 the calorimeter is said to be compensating. If it
differs from unity by more than 5% or 10%, detector performance is
compromised because of fluctuations in the π0 content of the cascades.
Problems include:

a) A skewed signal distribution;
b) A response ratio for electrons and hadrons (the “e/π ratio”)

which is different from unity and depends upon energy;
c) A nonlinear response to hadrons (the response per GeV is

proportional to the reciprocal of e/π);
d) A constant contribution to detector resolution, almost

proportional to the degree of noncompensation. The coefficient
relating the constant term to |1−e/h| is 14% according to FLUKA
simulations, and 21% according to Wigman’s calculations [67].

In most cases e/h is greater than unity, particularly if little
hydrogen is present or if the gate time is short. This is because much
of the low-energy hadronic energy is “hidden” in nuclear binding
energy release, low-energy spallation products, etc. Partial correction
for these losses occurs in a sampling calorimeter with thick plates,
because a disproportionate fraction of electromagnetic energy is
deposited in the inactive region. For this reason, a fully sensitive
detector such as BGO or glass cannot be made compensating.

Compensation has been demonstrated in calorimeters with 2.5 mm
scintillator sheets sandwiched between 3 mm depleted uranium
plates [71] or 10 mm lead plates [72]; resolutions σ/E of 0.34/

√
E

and 0.44/
√

E were obtained for these cases (E in GeV). The former
was shown to be linear to within 2% over three orders of magnitude
in energy, with approximately Gaussian signal distributions.
Free electron drift velocities in liquid ionization sensors [73–76]:
Velocities as a function of electric field strength are given in
Refs. 73–76 and plotted in Fig. 24.8.

24.8. Silicon photodiodes and particle detectors

Updated January 2000 by H.F.W. Sadrozinski (UCSC) and H.G.
Spieler (LBNL).

Silicon detectors are p-n junction diodes operated at reverse bias.
This forms a sensitive region depleted of mobile charge and sets up
an electric field that sweeps charge liberated by radiation to the
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Figure 24.8: Electron drift velocity as a function of field
strength for commonly used liquids.

electrodes. The thickness of the depleted region is

W =
√

2ε (V + Vbi)/Ne =
√

2ρµε(V + Vbi) , (24.17)

where V = external bias voltage
Vbi = “built-in” voltage (≈ 0.5 V for resistivities typically used

in detectors
N = doping concentration
e = electronic charge
ε = dielectric constant = 11.9 ε0 ≈ 1 pF/cm
ρ = resistivity (typically 1–10 kΩ cm)
µ = charge carrier mobility

= 1350 cm2 V−1 s−1 for electrons (n-type material)
= 450 cm2 V−1 s−1 for holes (p-type material)

or

W = 0.5 |µm/
√

Ω-cm ·V| ×
√

ρ(V + Vbi) for n-type material, (24.18)

and

W = 0.3 |µm/
√

Ω-cm ·V| ×
√

ρ(V + Vbi) for p-type material. (24.19)

The corresponding capacitance per unit area is

C = ε/W ≈ 1 [pF/cm] /W . (24.20)

In strip detectors the capacitance is dominated by the strip-to-strip
fringing capacitance of ∼ 1–1.5 pF cm−1 of strip length at a strip
pitch of 25–50 µm.

The particle energy required to create an electron-hole pair
is about 3.6 eV (which is larger than the band gap because of
momentum conservation). For minimum-ionizing particles, the most
probable charge deposition in a 300 µm thick silicon detector is about
3.5 fC (22000 electrons). Readily available photodiodes have quantum
efficiencies > 70% for wavelengths between 600 nm and 1 µm. UV
extended photodiodes have useful efficiency down to 200 nm. In
applications in which photodiodes detect light from scintillators, care
must be taken so that signal from the scintillator is larger than that
produced by particles going through the photodiode.

Collection time decreases with increased depletion voltage, and
can be reduced further by operating the detector with “overbias,”
i.e., a bias voltage exceeding the value required to fully deplete the
device. The collection time is limited by velocity saturation at high
fields (approaching 107 cm/s at E > 104 V/cm; at an average field
of 104 V/cm the collection time is about 15 ps/µm for electrons and
30 ps/µm for holes. In typical fully depleted detectors of 300 µm
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thickness, electrons are collected within about 10 ns, and holes within
about 25 ns.

Position resolution is limited by transverse diffusion during charge
collection (typically 5 µm for 300 µm thickness) and by knock-on
electrons. Resolutions of 3–4 µm (rms) have been obtained in beam
tests. In magnetic fields, the Lorentz drift deflects the electron and
hole trajectories and the detector must be tilted to reduce spatial
spreading (see “Hall effect” in semiconductor textbooks).

Radiation damage occurs through two basic mechanisms:

a) Bulk damage due to displacement of atoms from their lattice
sites. This leads to increased leakage current, carrier trapping,
and build-up of space charge that changes the required operating
voltage. Displacement damage depends on the nonionizing energy
loss and the energy imparted to the recoil atoms, which can
initiate a chain of subsequent displacements, i.e., damage clusters.
Hence, it is critical to specify both particle type and energy.

b) Surface damage due to charge build-up in surface layers, which
leads to increased surface leakage currents. In strip detectors the
inter-strip isolation is affected. The effects of charge build-up are
strongly dependent on the device structure and on fabrication
details. Since the damage is proportional to the absorbed energy
(when ionization dominates), the dose can be specified in rad (or
Gray) independent of particle type.

The increase in reverse bias current due to bulk damage is
∆Ir = αΦ per unit volume, where Φ is the particle fluence and α the
damage coefficient (α ≈ 3×10−17 A/cm for minimum ionizing protons
and pions after long-term annealing; α ≈ 2× 10−17 A/cm for 1 MeV
neutrons). The reverse bias current depends strongly on temperature

IR(T2)
IR(T1)

=
(

T2

T1

)2

exp
[
− E

2k

(
T1 − T2

T1T2

)]
(24.21)

where E = 1.2 eV in irradiated Si, so rather modest cooling can
reduce the current substantially (∼ 6-fold reduction in cooling from
room temperature to 0◦C).

The space-charge concentration in high-resistivity n-type Si changes
approximately as

N = N0e
−δΦ − βΦ , (24.22)

where N0 is the initial donor concentration, δ ≈ 6 × 10−14 cm2

determines donor removal, and β ≈ 0.03 cm−1 describes acceptor
creation. The acceptor states trap electrons, building up a negative
space charge, which in turn requires an increase in the applied
voltage to sweep signal charge through the detector thickness. This
has the same effect as a change in resistivity, i.e., the required
voltage drops initially with fluence, until the positive and negative
space charge balance and very little voltage is required to collect all
signal charge. At larger fluences the negative space charge dominates,
and the required operating voltage increases (V ∝ N). The safe
operating limit of depletion voltage ultimately limits the detector
lifetime. Strip and pixel detectors have remained functional at fluences
beyond 1015 cm−2 for minimum ionizing protons. At this damage
level, charge loss due to recombination and trapping also becomes
significant. The occupancy of the defect charge states is strongly
temperature dependent; competing processes can increase or decrease
the required operating voltage. It is critical to choose the operating
temperature judiciously (−10 to 0◦C in typical collider detectors)
and limit warm-up periods during maintenance. For a more detailed
summary see Ref. 77 and references therein.

24.9. Low-noise electronics

Written October 1999 by H. Spieler (LBNL).

Many detectors rely critically on low-noise electronics, either to
improve energy resolution or to allow a low detection threshold. A
typical detector front-end is shown in Fig. 24.9.

The detector is represented by a capacitance Cd, a relevant model
for most detectors. Bias voltage is applied through resistor Rb and the
signal is coupled to the preamplifier through a blocking capacitor Cc.
The series resistance Rs represents the sum of all resistances present

OUTPUT
DETECTOR

BIAS
RESISTOR

Rb

Cc Rs

Cb

Cd

DETECTOR BIAS

PULSE SHAPERPREAMPLIFIER

Figure 24.9: Typical detector front-end circuit.

in the input signal path, e.g. the electrode resistance, any input
protection networks, and parasitic resistances in the input transistor.
The preamplifier provides gain and feeds a pulse shaper, which tailors
the overall frequency response to optimize signal-to-noise ratio while
limiting the duration of the signal pulse to accommodate the signal
pulse rate. Even if not explicitly stated, all amplifiers provide some
form of pulse shaping due to their limited frequency response.

The equivalent circuit for the noise analysis (Fig. 24.10) includes
both current and voltage noise sources. The leakage current of a
semiconductor detector, for example, fluctuates due to electron
emission statistics. This “shot noise” ind is represented by a current
noise generator in parallel with the detector. Resistors exhibit noise
due to thermal velocity fluctuations of the charge carriers. This noise
source can be modeled either as a voltage or current generator.
Generally, resistors shunting the input act as noise current sources and
resistors in series with the input act as noise voltage sources (which is
why some in the detector community refer to current and voltage noise
as “parallel” and “series” noise). Since the bias resistor effectively
shunts the input, as the capacitor Cb passes current fluctuations to
ground, it acts as a current generator inb and its noise current has
the same effect as the shot noise current from the detector. Any other
shunt resistances can be incorporated in the same way. Conversely,
the series resistor Rs acts as a voltage generator. The electronic noise
of the amplifier is described fully by a combination of voltage and
current sources at its input, shown as ena and ina.
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Figure 24.10: Equivalent circuit for noise analysis.

Shot noise and thermal noise have a “white” frequency distribution,
i.e. the spectral power densities dPn/df ∝ di2n/df ∝ de2

n/df are
constant with the magnitudes

i2nd = 2eId ,

i2nb =
4kT

Rb
,

e2
ns = 4kTRs , (24.23)

where e is the electronic charge, Id the detector bias current, k the
Boltzmann constant and T the temperature. Typical amplifier noise
parameters ena and ina are of order nV/

√
Hz and pA/

√
Hz. Trapping

and detrapping processes in resistors, dielectrics and semiconductors
can introduce additional fluctuations whose noise power frequently
exhibits a 1/f spectrum. The spectral density of the 1/f noise voltage
is

e2
nf =

Af
f

, (24.24)

where the noise coefficient Af is device specific and of order
10−10–10−12 V2.
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A fraction of the noise current flows through the detector
capacitance, resulting in a frequency-dependent noise voltage
i2n/(ωCd)2, which is added to the noise voltage in the input circuit.
Since the individual noise contributions are random and uncorrelated,
they add in quadrature. The total noise at the output of the
pulse shaper is obtained by integrating over the full bandwidth of
the system. Superimposed on repetitive detector signal pulses of
constant magnitude, purely random noise produces a Gaussian signal
distribution.

Since radiation detectors are typically used to measure charge,
the system’s noise level is conveniently expressed as an equivalent
noise charge Qn, which is equal to the detector signal that yields a
signal-to-noise ratio of one. The equivalent noise charge is commonly
expressed in Coulombs, the corresponding number of electrons, or the
equivalent deposited energy (eV). For a capacitive sensor

Q2
n = i2nFiTS + e2

nFv
C2

TS
+ FvfAfC

2 , (24.25)

where C is the sum of all capacitances shunting the input, Fi, Fv,
and Fvf depend on the shape of the pulse determined by the shaper
and Ts is a characteristic time, for example, the peaking time of a
semi-gaussian pulse or the sampling interval in a correlated double
sampler. The form factors Fi, Fv are easily calculated

Fi =
1

2TS

∫ ∞
−∞

[W (t)]2 dt , Fv =
TS
2

∫ ∞
−∞

[
dW (t)

dt

]2

dt , (24.26)

where for time-invariant pulse-shaping W (t) is simply the system’s
impulse response (the output signal seen on an oscilloscope) with
the peak output signal normalized to unity. For more details see
Refs. [78–79].

A pulse shaper formed by a single differentiator and integrator with
equal time constants has Fi = Fv = 0.9 and Ffv = 4, independent
of the shaping time constant. The overall noise bandwidth, however,
depends on the time constant, i.e. the characteristic time Ts. The
contribution from noise currents increases with shaping time, i.e.,
pulse duration, whereas the voltage noise decreases with increasing
shaping time. Noise with a 1/f spectrum depends only on the ratio
of upper to lower cutoff frequencies (integrator to differentiator time
constants), so for a given shaper topology the 1/f contribution to Qn

is independent of Ts. Furthermore, the contribution of noise voltage
sources to Qn increases with detector capacitance. Pulse shapers
can be designed to reduce the effect of current noise, e.g., mitigate
radiation damage. Increasing pulse symmetry tends to decrease Fi
and increase Fv (e.g., to 0.45 and 1.0 for a shaper with one CR
differentiator and four cascaded integrators).

For the circuit shown above,

Q2
n =

(
2eId + 4kT/Rb + i2na

)
FiTS

+
(
4kTRs + e2

na

)
FvC

2
d/TS + FvfAfC

2
d .

(24.27)

As the characteristic time TS is changed, the total noise goes
through a minimum, where the current and voltage contributions are
equal. Fig. 24.11 shows a typical example. At short shaping times the
voltage noise dominates, whereas at long shaping times the current
noise takes over. The noise minimum is flattened by the presence
of 1/f noise. Increasing the detector capacitance will increase the
voltage noise and shift the noise minimum to longer shaping times.

For quick estimates, one can use the following equation, which
assumes an FET amplifier (negligible ina) and a simple CR–RC
shaper with time constants τ (equal to the peaking time):

(Qn/e)2 = 12
[

1
nA · ns

]
Idτ + 6× 105

[
kΩ
ns

]
τ

Rb

+ 3.6× 104

[
ns

(pF)2(nV)2/Hz

]
e2
n

C2

τ
.

(24.28)

Noise is improved by reducing the detector capacitance and leakage
current, judiciously selecting all resistances in the input circuit, and
choosing the optimum shaping time constant.
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Figure 24.11: Equivalent noise charge vs shaping time.

The noise parameters of the amplifier depend primarily on the
input device. In field effect transistors, the noise current contribution
is very small, so reducing the detector leakage current and increasing
the bias resistance will allow long shaping times with correspondingly
lower noise. In bipolar transistors, the base current sets a lower bound
on the noise current, so these devices are best at short shaping times.
In special cases where the noise of a transistor scales with geometry,
i.e., decreasing noise voltage with increasing input capacitance, the
lowest noise is obtained when the input capacitance of the transistor
is equal to the detector capacitance, albeit at the expense of power
dissipation. Capacitive matching is useful with field-effect transistors,
but not bipolar transistors. In bipolar transistors, the minimum
obtainable noise is independent of shaping time, but only at the
optimum collector current IC , which does depend on shaping time.

Q2
n,min = 4kT

C√
βDC

√
FiFv at Ic =

kT

e
C
√

βDC

√
Fv
Fi

1
TS

, (24.29)

where βDC is the DC current gain. For a CR–RC shaper,

Qn,min/e ≈ 800
[ 1√

pF

]
×

√
C

(βDC)1/4
. (24.30)

Practical noise levels range from ∼ 1e for CCDs at long shaping
times to ∼ 104 e in high-capacitance liquid argon calorimeters. Silicon
strip detectors typically operate at ∼ 103 e electrons, whereas pixel
detectors with fast readout provide noise of several hundred electrons.

In timing measurements, the slope-to-noise ratio must be optimized,
rather than the signal-to-noise ratio alone, so the rise time tr of the
pulse is important. The “jitter” σt of the timing distribution is

σt =
σn

(dS/dt)ST
≈ tr

S/N
, (24.31)

where σn is the rms noise and the derivative of the signal dS/dt is
evaluated at the trigger level ST . To increase dS/dt without incurring
excessive noise, the amplifier bandwidth should match the rise-time
of the detector signal. Increasing signal-to-noise ratio also improves
time resolution, so minimizing the total capacitance at the input is
also important. At high signal-to-noise ratios, the time jitter can be
much smaller than the rise time. The timing distribution may shift
with signal level (“walk”), but this can be corrected by various means,
either in hardware or software [80].



24. Particle detectors 183

24.10. Superconducting solenoids for collider
detectors

Revised October 1997 by R.D. Kephart (FNAL).

24.10.1. Basic (approximate) equations: In all cases SI units
are assumed, so that B is in tesla, E is in joules, dimensions are in
meters, and µ0 = 4π × 10−7.

Magnetic field: The magnetic field at the center of a solenoid of
length L and radius R, having N total turns and a current I is

B(0, 0) =
µ0NI√

L2 + 4R2
. (24.32)

Stored energy: The energy stored in the magnetic field of any magnet
is calculated by integrating B2 over all space:

E =
1

2µ0

∫
B2dV . (24.33)

For a solenoid with an iron flux return in which the magnetic field is
< 2T , the field in the aperture is approximately uniform and equal to
µ0NI/L. If the thickness of the coil is small, (which is the case if it is
superconducting), then

E ≈ (π/2µ0)B2R2L . (24.34)

Cost of a superconducting solenoid [81]:

Cost (in M$) = 0.523 [(E/(1 MJ)]0.662 (24.35)

Magnetostatic computer programs: It is too difficult to solve the
Biot-Savart equation for a magnetic circuit which includes iron
components and so iterative computer programs are used. These
include POISSON, TOSCA [82], and ANSYS [83].

24.10.2. Scaling laws for thin solenoids: For a detector in which
the calorimetry is outside the aperture of the solenoid, the coil must
be thin in terms of radiation and absorption lengths. This usually
means that the coil is superconducting and that the vacuum vessel
encasing it is of minimum real thickness and fabricated of a material
with long radiation length. There are two major contributers to the
thickness of a thin solenoid:

1. The conductor, consisting of the current-carrying superconducting
material (usually Cu/Nb-Ti) and the quench protecting stabilizer
(usually aluminum), is wound on the inside of a structural
support cylinder (usually aluminum also). This package typically
represents about 60% of the total thickness in radiation lengths.
The thickness scales approximately as B2R.

2. Approximately another 25% of the thickness of the magnet comes
from the outer cylindrical shell of the vacuum vessel. Since this
shell is susceptible to buckling collapse, its thickness is determined
by the diameter, length, and the modulus of the material of which
it is fabricated. When designing this shell to a typical standard,
the real thickness is

t = PcD
2.5[(L/D)− 0.45(t/D)0.5]/2.6Y

0.4
, (24.36)

where t = shell thickness (in), D = shell diameter (in), L = shell
length (in), Y = modulus of elasticity (psi), and Pc = design
collapse pressure (= 30 psi). For most large-diameter detector
solenoids, the thickness to within a few percent is given by [84]

t = PcD
2.5(L/D)/2.6Y

0.4
. (24.37)
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Figure 24.12: Ratio of stored energy to cold mass for existing
thin detector solenoids. Solenoids in decommissioned detectors
are indicated by open circles.

24.10.3. Properties of collider detector solenoids: The physical
dimensions, central field, stored energy and thickness in radiation
lengths normal to the beam line of the superconducting solenoids
associated with the major colliders are given in Table 24.6.

Table 24.6: Properties of superconducting collider detector
solenoids.

Experiment–Lab Field Bore Dia Length Energy Thickness
(T) (m) (m) (MJ) (X0)

CDF–Fermilab 1.5 2.86 5.07 30 0.86
DØ –Fermilab 2.0 1.06 2.73 5.6 0.87
BaBar–SLAC 1.5 2.80 3.46 27.0 < 1.4
Topaz–KEK 1.2 2.72 5.4 19.5 0.70
Venus–KEK 0.75 3.4 5.64 12 0.52
Cleo II–Cornell 1.5 2.9 3.8 25 2.5
Aleph–CERN 1.5 5.0 7.0 130 1.7
Delphi–CERN 1.2 5.2 7.4 109 4.0
H1–DESY 1.2 5.2 5.75 120 1.2
Zeus–DESY 1.8 1.72 2.85 10.5 0.9

The ratio of stored energy to cold mass (E/M) is a useful
performance measure. One would like the cold mass to be as small
as possible to minimize the thickness, but temperature rise during
a quench must also be minimized. Ratios as large as 8 kJ/kg may
be possible (final temperature of 80 K after a fast quench with
homogeneous energy dump), but some contingency is desirable. This
quantity is shown as a function of total stored energy for some major
collider detectors in Fig. 24.12.

24.11. Measurement of particle momenta in a
uniform magnetic field [85,86]

The trajectory of a particle with momentum p (in GeV/c) and
charge ze in a constant magnetic field

−→
B is a helix, with radius

of curvature R and pitch angle λ. The radius of curvature and
momentum component perpendicular to

−→
B are related by

p cosλ = 0.3 z B R , (24.38)

where B is in tesla and R is in meters.
The distribution of measurements of the curvature k ≡ 1/R is

approximately Gaussian. The curvature error for a large number of
uniformly spaced measurements on the trajectory of a charged particle
in a uniform magnetic field can be approximated by

(δk)2 = (δkres)2 + (δkms)2 , (24.39)

where δk = curvature error
δkres = curvature error due to finite measurement resolution
δkms = curvature error due to multiple scattering.
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If many (≥ 10) uniformly spaced position measurements are made
along a trajectory in a uniform medium,

δkres =
ε

L′2

√
720

N + 4
, (24.40)

where N = number of points measured along track
L′ = the projected length of the track onto the bending plane
ε = measurement error for each point, perpendicular to the

trajectory.

If a vertex constraint is applied at the origin of the track, the
coefficient under the radical becomes 320.

For arbitrary spacing of coordinates si measured along the projected
trajectory and with variable measurement errors εi the curvature error
δkres is calculated from:

(δkres)2 =
4
w

Vss
VssVs2s2 − (Vss2)2

, (24.41)

where V are covariances defined as Vsmsn = 〈smsn〉 − 〈sm〉〈sn〉 with
〈sm〉 = w−1∑(sim/εi

2) and w =
∑

εi
−2.

The contribution due to multiple Coulomb scattering is
approximately

δkms ≈
(0.016)(GeV/c)z

Lpβ cos2 λ

√
L

X0
, (24.42)

where p = momentum (GeV/c)
z = charge of incident particle in units of e

L = the total track length
X0 = radiation length of the scattering medium (in units of

length; the X0 defined elsewhere must be multiplied by
density)

β = the kinematic variable v/c.

More accurate approximations for multiple scattering may be found
in the section on Passage of Particles Through Matter (Sec. 23
of this Review). The contribution to the curvature error is given
approximately by δkms ≈ 8srms

plane/L2, where srms
plane is defined there.
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